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Note 

Baxter Solution to the O-Z Equation 
near the Critical Point 

The pair distribution function, g(r), and the interparticle pair potential, u(r), 
permit the equilibrium properties of homogeneous classic liquids to be described. 
To obtain g(r) some different procedures can be used and one of them, the most 
frequently used, is to solve the Ornstein-Zernike, O-Z, equation 

h(r)=c(r)+pjdr’h(jr-r’j)c(r’), (1) 

where h(r) = g(r) - 1 is the total correlation function, c(r) is the direct correlation 
function, and p is the density number. 

To solve Eq. (1) a second equation is needed which relates h(r), g(r), and c(r) to 
the potential u(r) and temperature p = (k, T) ~ ‘, where k, is the Boltzmann 
constant. This second equation can be obtained in several ways using different 
approximations to the density expansion of g(r) such as: 

c(r) = g(r)Cl - ewUMr)l (24 

g(r) = exp[ -/h(r) + h(r) -c(r)] (2b) 

g(r) = exp[I -/h(r) + h(r) - c(r) + E(r)], (2c) 

where (2a) is the Percus-Yevic equation, P-Y, (2b) is the hypernetted-chain equa- 
tion, HNC, and (2~) is the modified hypernetted-chain equation, MHNC, when a 
model form for the bridge function E(r) is used and a constrain of thermodynamic 
consistency is enforced. E(r) is the so-called bridge function because it takes into 
account the sum of the elemental diagrams, or bridges, in the diagrammatic 
analysis of the two-point function [l]. 

For realistic potentials, an iterative numerical procedure is used to solve the O-Z 
equation with Eqs. (2a), (2b), or (2~). In those cases one usually uses c(r) and 
H(r) = h(r) - c(r), and Eq. (1) becomes (with the tilde denoting Fourier transform) 
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i?(k) = pi’*(k)/( 1 - p?(k)) 
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and the iterative cycle used is 

H;-,(r) -+ cj(r) + c”Jr) -+ f&(k) -+ Hi(r). (3b) 

For the correlation functions in liquid, an algorithm [Z] has been proposed to 
obtain the direct and inverse Fourier transform: 

.7(ki) = t yjj’ Ar ri sin(k,r,)f(r,) 
I r=l 

(da) 

N-1 

f(ri) = (27r2r,)) ’ c Ak kj sin(kjri)y(kj), 
i= 1 

(4b) 

where Ar = R/N, Ak = n/R, ri = i Ar, k, = j Ak, R is a distance which makes f (r) ‘1: 0 
for r > R, and N is the number of points considered in the interval (0, R). 

This procedure has been used in the calculation of simple liquid properties in 
the neighbourhood of the critical point, since the critical density pr and critical 
temperature T,, can be obtained by minimization of the inverse isothermal 
compressibility, defined as 

x -I = 1-471~ jz dr r2c(r) 
0 

and from the numerical point of view, x- ’ can be calculated as 

x -‘=1-4~p 5 Arrfc(r,)-Cdrr2c(r)], 
,= I 

(5) 

(6) 

where the integral in (r, co) is calculated using either some approximations [3] 
about the asymptotic behaviour of c(r), or taking c(r) = 0 for relatively large values 
of R[4]. 

To carry out the Fourier transform, the step size in the k space is Ak = n/R and 
the values used until now [3,4] have been from Ak = 7c/50 = 0.630 -’ up to 
Ak = n/160o = 0.02~ I. From the numerical point of view it means that the algo- 
rithm does not depend on what B(k) is for k =C Ak. The basic O-Z contribution to 
the criticality appears in the integrand k@k) for k < [ ~ ‘, where [ is the correlation 
length, so that, if [ > R the algorithm does not take account of the increase of the 
correlation in a self-consistent manner. This implies that the calculation, in the 
neighbourhood of the critical point, is limited by [ = R, so the accuracy in 
obtaining pC and TC will decrease and the calculations of the critical exponents will 
be difftcult to do. This could be the explanation of the non-physical abrupt decay 
of Ln[rh(r)] near R, shown in Fig. I in Ref. [S], and consequently one cannot be 
sure of good asymptotic behaviour of the net correlation function if it is obtained 
by means of the O-Z expression in the critical zone, i.e., h(r) - exp( -r/()/r. 
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FIG. 1. Plot of Ln[rh(r)] obtained using the numerical method described in Ref. [6]. The 
thermodynamic conditions are kT/E = 1.3195 and per -’ = 0.225, where c and 6 are the parameters of the 
Lennard-Jones potential. The distances are measured in units of 0. 

An alternative solution to the O-Z equation, when c(r) = 0 for r > R, has been 
proposed by Baxter [S], who found 

K(Y) = -Q’(r) + 2np [” dt Q’(b) Q(t - r) 
d). 

Va) 

r/z(r)= -Q’(r)+2np~Xdt(r-t)h(lr--t()Q(t), V’b) 
0 

where Q(r) is a real function and Q’(r) its derivative. These equations, using any 
of the approximate equations (2a)-(2c), allow one to find h(r) values without using 
the approximation of the Fourier transforms. 

We have solved Eqs. (7a) and (7b), with the P-Y equation (Eq. (2a)), by an 
iterative numerical procedure which uses the Simpson rule and a weight factor to 
give adequate mixing of the input function of the iteration i, QF, with the output 
function, Qy’. The iteration process is continued until the value [7] 

5 (Q’O”‘(r) - Q”“(r)) dr < 10m3 (8) 

is reached, which satisfies the convergence condition on the thermodynamic proper- 
ties, used in the Fourier transform procedure [3]. 
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As Eqs. (7a) and (7b) require c(r) =O, for Y > R, we have used the Lennard- 
Jones (12-6) potential, uLJ(r), modified according to the suggestions of Nicolas 
et al. [S], giving the so-called shifted-force potential defined as 

u(r) = uLJ(r) + 48(RpL3 -0.5Rp7)r+28Rp6-52Rp’= Pa) 

with the properties 

u(R) = 0 Pb) 

du(r) = 0. 
dr r=R 

(9c) 

We have taken different values of R (R = 50, lOa, 15~, and 200) with the same 
increment interval of Ar = 0.0125 for all the calculations. 

This numerical approach is similar to that employed by Watts [9] using another 
of Baxter’s equations, obtainable by eliminating the auxiliary function Q(r) from 
Eqs. (7a) and (7b). He used a truncated Lennard-Jones potential and three values 
of the range parameter (R = 3.50, 5a, and 6a) and found a strong sensitivity to R 
in the critical temperature computed, but a relative insensitivity to the critical 
density. 

In order to test the behaviour in the critical zone we have repeated the same ther- 
modynamic conditions as in Ref. [S]; i.e., k, T/E = 1.3195 and po3 = 0.225, which is 
a state point very close to the critical points shown in Table I, corresponding to 
Ref. [lo]. 

In Fig. 1, Ln[rh(r)] is plotted versus r and one can see in the figure how the 
linear behaviour is maintained from distances of r > 3a up to the range of the 
potential R, independently of the R value. The non-physical decay for r N R is not 
found in any of the cases. 

From these results we can conclude that at points neighbouring the critical point, 
the behaviour of the O-Z equation is obtained independently of the interparticle 
pair potential and its range. Thus the procedure described above seems to give 
the most suitable results for calculating the equilibrium properties in liquids in the 
critical region, since there are no limitations in determining the critical point and, 
consequently, the critical exponents. 
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